HUMAN LANGUAGE TECHNOLOGIES
Settore: INF/01 | Codice: 649AA | Crediti: 9 | Semestre: 2 |
Docenti: Attardi Giuseppe |
Obiettivi di apprendimento
ConoscenzeLearning fundamental techniques, algorithms and models used in natural language processing. Understanding of the architectures of typical text analytics applications and of libraries for building them. Expertise in design, implementation and evaluation of applications that exploit analysis, interpretation and transformation of texts.
Modalità di verifica delle conoscenzeHomeworks and final project.
CapacitàAbility to design, implement and evaluate applications that exploit analysis, interpretation and transformation of texts.
Prerequisiti
- programming skills, proficiency in the programming language Python
- elementary Calculus and Linear Algebra (e.g. course “Computational Mathematics for learning and data analysis” (646AA))
- elements of probability and statistics (e.g. course “Calcolo delle Probabilità e Statistica” (269AA))
- machine learning (e.g. course “Machine Learning” (654AA))
Programma
The course presents principles, models and the state of the art techniques for the analysis of natural language, focusing mainly on statistical machine learning approaches and Deep Learning in particular. Students will learn how to apply these techniques in a wide range of applications using modern programming libraries.Formal and statistical approaches to NLP.
- Statistical methods: Language Model, Hidden Markov Model, Viterbi Algorithm, Generative vs Discriminative Models
- Linguistic essentials: words, lemmas, morphology, PoS, phrases.
- Parsing: constituency and dependency parsing.
- Processing Pipelines: UIMA, Tanl
- Lexical semantics: collocations, corpora, thesauri, gazetteers.
- Distributional Semantics: Word embeddings, Character embeddings.
- Deep Learning for natural language.
- Applications: Entity recognition, Entity linking, Classification, Summarization.
- Opinion mining, Sentiment Analysis.
- Question answering, Language inference, Dialogic interfaces (chatbots)
- Statistical Machine Translation.
- NLP libraries: NLTK, Theano, Tensorflow, Keras
Bibliografia
- C. Manning, H. Schutze. Foundations of Statistical Natural Language Processing. MIT Press, 2000.
- D. Jurafsky, J.H. Martin, Speech and Language Processing. 2nd edition, Prentice-Hall, 2008.
- S. Kubler, R. McDonald, J. Nivre. Dependency Parsing. 2010.
- P. Koehn. Statistical Machine Translation. Cambridge University Press, 2010.
- S. Bird, E. Klein, E. Loper. Natural Language Processing with Python.
Modalità di esame
Project.
Fonte: ESSETRE e Portale esami